RAPID COMMUNICATION

Cs₂CuP₃S₉: A Chiral Compound with Screw Helices

Jason A. Hanko and Mercouri G. Kanatzidis¹

Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824

Received December 2, 1999; in revised form March 7, 2000; accepted March 10, 2000

The reaction of Cu with a molten mixture of Cs_2S/P_2S_5 produced the quaternary compound $Cs_2CuP_3S_9$. The bright yellow crystals of $Cs_2CuP_3S_9$ are stable in air and water for several weeks. The compound crystallizes in the chiral, hexagonal space group $P6_5$ (No. 170) and at $23^{\circ}C$: a = 15.874(2) Å; c = 35.100(7) Å; V = 7660(3) Å³; Z = 18. The $[CuP_3S_9]_n^{2n-}$ chains are composed of an alternating arrangement of tetrahedral Cu⁺ ions and cyclic $[P_3S_9]^{3-}$ units. The structure contains parallel helical $[CuP_3S_9]_n^{2n-}$ chains that run along the *c*-axis. The cyclic $[P_3S_9]^{3-}$ unit derives from the molecular adamantane $[P_4S_{10}]$ unit with one $[PS]^{3+}$ vertex removed. The title compound was characterized by differential thermal analysis, far-IR, Raman, and single-crystal optical transmission UV/vis spectroscopy. Positive nonlinear optical response and second harmonic generation response was observed. $\bigcirc 2000$ Academic Press

INTRODUCTION

The use of chalcophosphate fluxes has enabled the discovery of many new chalcophosphate compounds (1). These fluxes are commonly formed by the in situ fusion of $A_2Q/P_2Q_5/Q$ (A = alkali metal; Q = S, Se), forming a variety of $[P_y Q_z]^{n-}$ units in a molten polychalcogenide solvent. In these "solutions" metals are oxidized and then "captured" by the various $[P_v Q_z]^{n-1}$ units, building up extended frameworks which, if anionic, are stabilized by alkali cations. This approach has produced several unusual compounds; examples include $Cs_2M_2P_2Se_6$ (M = Cu, Ag) (2), $K_3M_3P_3Se_9$ (M = Cu (3), Ag (4)), ALa(P_2Se_6) (5), the mixed-valent $A_6 A u_{1.5}^{I} A u_{1.5}^{III} (P_2 S e_6)_3$ (A = K, Rb) (6), $A_{3}AuP_{2}Se_{8}$ (A = K, Rb, Cs) (7), $A_{2}Au_{2}P_{2}Se_{6}$ (A = K, Rb) (7), A_2 AuPS₄ (A = K, Rb, Cs) (7), AAuP₂S₇ (A = K, Rb) (7), $K_{3}CuP_{2}S_{7}$ (8), $A_{2}CuP_{3}S_{9}$ (A = K, Rb) (8), $Cs_{2}Cu_{2}P_{2}S_{6}$ (8), $Rb_4Sn_2Ag_4(P_2Se_6)_3$ (9), $K_2Cu_2P_4Se_{10}$ (10), $[Cr_2(PS_4)_4]$ (6-11), and $CsTa_4S_5(S_2)(PS_4)_3$ (12). One of the lessons

the concentration of P_2S_5 in the flux favors the formation of higher order species such as $[P_2S_7]^{4-}$ and the cyclic

learned from these studies, for example, is that increasing

FIG. 1. ORTEP representation of $Cs_2CuP_3S_9$ as viewed perpendicular to the *c*-axis (50% probability ellipsoids). Ellipsoids with octant shading are Cu atoms, boundary and axis ellipsoids are P atoms, boundary ellipsoids are S, and principal and axis ellipsoids are Cs atoms.

¹To whom correspondence should be addressed.

 $[P_3S_9]^{4-}$ units, whereas increasing the concentration of A_2S tends to break down those species and stabilize the discrete and fundamental $[PS_4]^{3-}$ unit. In the context of $[CuP_3S_9]^{2-}$ conforming to a 6₅ screw axis (13). Discrete

FIG. 2. (A) View of a long filament of the infinite $[CuP_3S_9]_n^{2n-}$ chain to show the helical conformation. (B) View down the helical axis of a $[CuP_3S_9]_n^{2n-}$ chain containing Cu(1). (C) View down the helical axis of a $[CuP_3S_9]_n^{2n-}$ chain containing Cu(2) and Cu(3). (D) Fragments from each chain showing the adamantane clusters and the atomic labeling scheme.

chiral inorganic helices crystallizing in polar space groups are rare with HgS and elemental Se and Te being examples.

The unit cell of $Cs_2CuP_3S_9$ (14) is shown in Fig. 1. A careful look reveals three independent helices running down the *c*-axis. They are composed of alternating cyclic $[P_3S_9]^{3-}$ units chelating in a tridendate fashion to Cu⁺ ions; see Fig. 2. The binding to Cu ions leads to recognizable adamantane $[CuP_3S_{10}]$ clusters which propagate to form a helix by sharing two sulfur atoms. In all $[CuP_3S_9]_n^{2n-1}$ helices in the crystal, all dipoles point in the same direction, giving rise to the P65 space group. The three parallel $[CuP_3S_9]_n^{2n-}$ chains in the cell are separated crystallographically into two different kinds: one which consists of a single chain containing Cu(1) propagates and coils around the *c*-axis itself, and another which consists of two identical helices with their axes located at 1/3, 1/3 and 2/3, 2/3, respectively. The latter contains the atoms Cu(2) and Cu(3). A view of the two types of $[CuP_3S_9]_n^{2n-}$ screw helix is shown in Figs. 2B and 2C. Using a threaded bolt analogy, we can describe the overall side-by-side packing of the helical chains such that the ridges of one fit in the grooves of its nearest neighbors. The average Cu-S distance of the three $[CuS_4]$ tetrahedra is 2.306(9), 2.307(9), and 2.316(7) Å for Cu(1), Cu(2), and Cu(3), respectively. The S-Cu-S angles display a slight distortion from the tetrahedral geometry, with an average S-Cu-S angle of $109(2)^{\circ}$, $109(1)^{\circ}$, and $109(2)^{\circ}$ for Cu(1), Cu(2), and Cu(3), respectively.

The two $[CuP_3S_9]_n^{2n-}$ chains in (I) contain three crystallographically different $[P_3S_9]^{3-}$ units, with normal P–S bond distances in the range from 1.954(4) to 2.139(3) Å with an average P–S distance of 2.05(3) Å. The S–P–S angles reveal only slight distortions from the ideal tetrahedral coordination geometry, with an average angle of 109(2)°. The $[P_3S_9]^{3-}$ unit contains a cyclic $[P_3S_3]$ ring (chair conformation) with a mean P–P distance of 3.483(3) Å. There are two types of P–S distances in the three different cyclic $[P_3S_9]^{3-}$ units: the longer P–S distances within the P_3S_3 ring at 2.11(5) Å, and the shorter P–S distances for the terminal sulfide atoms at 1.97(1) Å.

The $[CuP_3S_9]_n^{2n-}$ chains are separated by Cs⁺ ions that are located in six different sites. The coordination of the Cs⁺ counterions is made of sulfur atoms and varies from 8 to 10. The *helical screw*-like, polar $[CuP_3S_9]_n^{2n-}$ chains in (I) differ dramatically from the *straight* chains of $A_2CuP_3S_9$ (A = K, Rb) (8), which also pack in a centrosymmetric fashion.

The optical absorption properties of $Cs_2CuP_3S_9$ were assessed by measuring the optical transmission spectrum of single crystal samples; see Fig. 3A. The sharp optical gap observed in the spectrum indicates that the compound is a wide band-gap semiconductor with a gap $E_g \sim 2.4$ eV. Below the band-gap the material shows good optical transparency down to the infrared region up to 0.2 eV.

The far-IR (15) spectrum of $Cs_2CuP_3S_9$ displays several absorptions in the 620–400 cm⁻¹ range. The sharp absorp-

FIG. 3. (A) Single-crystal optical absorption spectrum of $Cs_2CuP_3S_9$. The sharp features at high absorbance are noise and due to the very low transmission of light at those energies. (B) Raman spectrum of $Cs_2CuP_3S_9$.

tion at 400 and 463 cm⁻¹ are characteristic of the P-S-P stretching vibrations in the cyclic $[P_3S_9]^{3-}$ unit. The remaining absorptions are tentatively assigned to the $-PS_2$ stretching vibrations by analogy to $AAuP_2S_7$ (A = K, Rb) (7). Absorptions below 400 cm^{-1} are assigned to Cu-S stretching vibrations. The Raman spectrum (15) of Cs₂CuP₃S₉, shown in Fig. 3B, displays shifts in the 675to 250-cm⁻¹ range that are tentatively assigned to P-S and shifts below 250 cm⁻¹ are assigned to Cu-S stretching vibrations. The shifts at ca. 386 and 294 cm⁻¹ are assigned to the $[PS_4]^{3-}$ by analogy to A_2AuPS_4 , $A_2AuP_2S_7$ (A = K, Rb) (7), and $A_2P_2S_6$ (A = K, Cs) (16). The Raman spectrum of Cs₂CuP₃S₉ is shown in Fig. 3B. Differential thermal analysis followed by careful XRD analysis of the residues revealed that the title compound melts incongruently at ~477°C, forming a mixture of $Cs_2CuP_3S_9$ and $Cs_2P_2S_6$ (17) and a ternary Cu/P/S phase.

The unique chiral structure of $Cs_2CuP_3S_9$ is evidently stabilized by the Cs cation. The polar character makes the compound a potential candidate for nonlinear optical applications. Preliminary qualitative tests for nonlinear optical properties of powder samples of $Cs_2CuP_3S_9$ using a pulsed Nd YAG laser were positive, judging from the frequency-doubled green light exiting the sample. Further work should be carried out to explore this property.

ACKNOWLEDGMENT

Financial support from the National Science Foundation (DMR-9817287) is gratefully acknowledged. This work made use of the SEM facilities of the Center for Electron Optics at Michigan State University.

REFERENCES

- (a) M. G. Kanatzidis, Curr. Opinion Solid State Mater. Sci. 2, 139 (1997);
 (b) A. Sutorik and M. G. Kanatzidis, Prog. Inorg. Chem. 43, 151 (1995).
- 2. T. J. McCarthy and M. G. Kantzidis, Inorg. Chem. 34, 1257 (1995).
- 3. P. K. Dorhout and T. M. Malo, Z. Anorg. Allg. Chem. 622, 385 (1996).
- 4. T. J. McCarthy and M. G. Kanatzidis, Inorg. Chem. 34, 1257 (1995).
- (a) J. H. Chen and P. K. Dorhout, *Inorg. Chem.* 34, 5705 (1995); (b) J. H. Chen, P. K. Dorhout, and J. E. Ostenson, *Inorg. Chem.* 35, 5627 (1996).
- K. Chondroudis, T. J. McCarthy, and M. G. Kanatzidis, *Inorg. Chem.* 35, 3451 (1996).
- K. Chondroudis, J. A. Hanko, and M. G. Kanatzidis, *Inorg. Chem.* 36, 2623 (1997).
- J. A. Hanko, J. Sayettat, S. Jobic, R. Brec, and M. G. Kanatzidis, *Chem. Mater.* 10, 3040 (1998).
- 9. K. Chondroudis and M. G. Kanatzidis, Inorg. Chem. 37, 2848 (1998).

- K. Chondroudis and M. G. Kanatzidis, *Inorg. Chem.* 37, 2098 (1998).
- V. Derstroff, V. Ksenofontov, P. Gutlich, and W. Tremel, *Chem. Com*mun. 187 (1998).
- 12. V. Derstroff and W. Tremel, Chem. Commun. 913 (1998).
- 13. (a) $Cs_2CuP_3S_9$ was synthesized from a mixture of 0.032 g (0.50 mmol) Cu, 0.220 g (1 mmol) P_2S_5 , and 0.149 g (0.50 mmol) Cs_2S which was sealed under vacuum in a Pyrex tube and heated to 500°C for 4 days followed by cooling to 100°C at 4°C h⁻¹. The excess $Cs_x[P_yS_z]$ flux was removed by washing with degassed methanol under inert atmosphere to reveal irregular bright yellow crystals (75% yield based on Cu). Microprobe energy dispersive (EDS) analysis, on several (>10) single crystals, gave an average composition of $Cs_{2.22}CuP_{3.3}S_9$.
- 14. A Siemens SMART Platform CCD diffractometer from a crystal of 0.200 × 0.200 × 0.120 mm dimensions and MoKα (λ = 0.71073 Å) radiation. An empirical absorption correction was applied to the data during data processing. Crystal data at 23°C: a = 15.874(2) Å; b = 15.874(2) Å; c = 35.100(7) Å; γ = 120.00; V = 7660(3) Å³; Z = 18; D_{cale} = 2.767 g/cm⁻³; space group P6₅; μ = 6.804 cm⁻¹ index ranges -19 ≤ h ≤ 21, -20 ≤ k ≤ 21, -22 ≤ l ≤ 47; total data 48681; unique data 9745; (R_{int} = 0.0944); data with F²_o ≥ 2σ(F²_o) 4056; No. of variables, 406; final R/R_w 0.030/0.069; GOF 0.335; largest diff. peak and hole 0.882/-0.767 e Å⁻³. (b) G. M. Sheldrick, "SHELXL: Version 5.03," Siemens Analytical X-ray Instruments, Inc., Madison, WI, 1994.
- 15. (a) Far-IR (CsI matrix) gave absorptions at 619(w), 519(w), 400(S), 463(s), 384(s), 370(s, sh), 241(w), and 161(w) cm⁻¹. (B) The Raman spectrum, in the same region, gave absorptions at 653(w, b), 586(m), 555(w), 486(w, b), 386(s), 325(m), 294(w), 254(w), 221(s) 175(m), and 150(w) cm⁻¹.
- W. Brockner, R. Becker, B. Eisenmann, and H. Schaefer, Z. Anorg. Allg. Chem. 520, 51 (1985).
- 17. O. Sala and M. L. A. Temperini, Chem. Phys. Lett. 36, 625 (1975).